
TREE GROUPS OF SHIFTED GRAPHS

PAUL BENDICH AND TRISTRAM BOGART

Abstract. The tree group is a subtle algebraic invariant of a graph, derivable
from its Laplacian matrix. We describe these objects in general and then detail
our e�orts at classifying the group for the special case of shifted graphs.

1. Laplacian Matrices of Graphs

Let G be graph on n vertices with m edges, with no loops or multiple edges
allowed. Label its vertices v1; : : : ; vn. Its Laplacian L(G) = (`ij) is the n � n
matrix given by

lij =

8<
:

deg(vi) if i = j
�1 if i 6= j and vi is adjacent to vj
0 if i 6= j and vi is not adjacent to vj

For example, let G1 be the simple graph on four vertices consisting of a triangle
on v1, v2, and v3, with another vertex v4 connected only to v1. Then L(G1) is the
4� 4 matrix below. 2

664
3 �1 �1 �1

�1 2 �1 0
�1 �1 2 0
�1 0 0 1

3
775

For more on Laplacians, see [?].

2. Tree Groups

For any graph G, L(G) is an integer matrix, so it can be interpreted as a linear
transformation L : Zn ! Zn. Then Im L is a subgroup of Zn, and so is its quotient
group (Zn)=(Im L). This quotient group is called the tree group of G (also called
the Picard group or the Jacobian in [?]). Unfortunately, L is a singular matrix,
as each row and each column sum to 0, so its image is not of full rank, and the
tree group includes at least one factor of Z. The number of such factors is the
number of connected components in G. It is possible to get around this by de�ning
a nonsingular reduced Laplacian, formed by striking out one row and column in the
section formed from each component of G, but we will simply ignore the unwanted
factors when we want to think of the tree group as �nite, e.g. in the Matrix-Tree
Theorem:

Theorem 1. [?] The cardinality of the tree group (ignoring any factors of Z) of a
connected graph G is the number of spanning trees in G.

This work was done as part of an REU during the summer of 2000 at the University of
Minnesota|Twin Cities under the direction of Vic Reiner.
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Corollary 2. The cardinality of the tree group of a disconnected graph G is the
product of the numbers of spanning trees in the various components of G, or equiv-
alently the number of spanning forests in G.

The corollary holds because if A and B are two components of G, then the
rows/columns of L corresponding to vertices in A contain only 0's in columns/rows
corresponding to vertices in B, so the section of L associated with A can be reduced
to a Smith Normal Form (see below) without a�ecting the section associated with
B. For example, if G consists of two disjoint triangles, then L(G) is as follows:2

6666664

2 �1 �1 0 0 0
�1 2 �1 0 0 0
�1 �1 2 0 0 0
0 0 0 2 �1 �1
0 0 0 �1 2 �1
0 0 0 �1 �1 2

3
7777775

The Laplacian is always symmetric, so the row space is the same as the col-
umn space. Furthermore, di�erent vertex orderings only permute the rows and
columns of the Laplacian, which corresponds to permuting the bases with respect
to which the Laplacian represents the transformation. Therefore the image of the
transformation, and thus the tree group, are invariants of G (up to isomorphism).

To calculate the tree group of a graph, we create the Smith Normal Form S(G)
of the Laplacian. The Smith Normal Form of an n�n integer matrix is a diagonal
matrix with each diagonal entry dividing the next. It is created by multiplying
the matrix on the left and right by unimodular n � n matrices. A unimodular
integer matrix is one that is invertible within the ring of integers; equivalently, one
of determinant �1. So for any matrix A,

S(A) = V1AV2

where V1 and V2 are unimodular. Right multiplication by unimodular matrices rep-
resents compositions of a limited set of row operations: adding an integer multiple
of a row to another row or permuting rows, and left multiplication represents the
same operations on columns. Every matrix has a unique Smith Normal Form, a
fact most often proved and used in the classi�cation theorem of �nitely generated
abelian groups (see e.g. [?, Chap. 12]).

Proposition 3. For any n� n matrix A with Smith Normal Form S, Im A �= Im
S.

Proof. Since V1 and V2 are unimodular, we can multiply the last equation through
by their inverses to obtain

A = U1SU2

where U1 and U2 are also unimodular. Then

x 2 Im A () 9y s.t. Ay = x
() U1SU2y = x
() SU2y = U�1

1 x

Since U2 is invertible, it represents a bijection from Zn to Zn. So as y ranges
through Zn, so does U2y. Similarly, U�1

1 also represents a bijection, so as x ranges
through Zn, so does U�1

1 x. Thus x 2 Im A if and only if U�1
1 x 2 Im S. So U�1

1

gives an isomorphism Im A! Im S, with inverse U1. �



TREE GROUPS OF SHIFTED GRAPHS 3

Once we have the Smith Normal Form, then, the tree group can easily be read o�
the diagonal entries; an integer vector [x1; x2; : : : ; xp] is in the image of a diagonal
matrix with diagonal entries [d1; d2; : : : ; xp] if and only if for all i, xi is a multiple
of di. If a diagonal entry di is 0, xi must always be 0. Assuming there are r 0's
along the diagonal, the tree group, quotient group of this image, is:

Zd1 � Zd2 � � � � � Zdn�r � Zr

.
So for any given graph of reasonably small size, the tree group can be easily

computed, e.g. in Maple using the command ismith. However, it is known in
general for very few classes of graphs. The tree group of any tree is the trivial
group since a tree obviously has exactly one spanning tree.

Theorem 4. [?] The tree group of a complete graph Kn is (Zn)
n�2.

Theorem 5. [?] The tree group of a complete bipartite graph Kp;q is (Zp)
p�2 �

(Zq)
q�2 � Zpq .

Theorem 6. [?] The tree group of a cycle Cn is Zn.

All of these can be proved by matrix manipulation, which is fairly straightforward
at least in the �rst two cases.

The orders of the individual cyclic groups whose product is the tree group are
called the invariant factors of the group. As noted, these are also the diagonal
entries of the Smith Normal Form, and so the 1's that appear along this diagonal are
also often considered invariant factors; including them in the product is harmless.

3. Shifted graphs

For our research, we focused on the class of shifted graphs. A simple graph G is
shifted (or, in some sources, threshold or degree-maximal) if for any two vertices v,
w in G with deg(v) � deg(w), every neighbor of w is either v or a neighbor of v.
There are several other equivalent de�nitions. For instance, shifted graphs are the
class of all simple graphs that can be generated by beginning with a single vertex
and then adding any number of vertices one at a time, with the restriction that
each vertex when it is added must be given either no edges at all or an edge to
every other vertex already in the graph.

Another way we found to de�ne connected shifted graphs (or components of
disconnected ones) is that they are exactly those graphs that can be broken up into
a collection of disjoint sets of vertices K1;K2; : : : ;Kr; I1; I2; : : : ; Is such that:

� Ki is a clique for i = 1; 2; : : : ; r.
� Ij is an independent set for j = 1; 2; : : : ; s.
� Either r = s or r = s+ 1.
� Any two vertices in two di�erent cliques are adjacent.
� Any two vertices in two di�erent independent sets are not adjacent.
� If vi 2 Ki and vj 2 Ij , then vi and vj are adjacent i� i � s� j.

We note that all vertices in a set have the same degree, and the given ordering
of sets represents a strictly decreasing order of degrees. In our example graph, we
have r = 2, s = 1, K1 = fv1g, K2 = fv2; v3g, and I1 = fv4g.

Proposition 7. A shifted graph is uniquely determined by its degree sequence.

This can easily be seen from our classi�cation or somewhat less easily from the
�rst given de�nition.
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4. Ferrers Diagrams and Merris' Theorem

A Ferrers diagram for a graph G consists of n rows of left-justi�ed squares
(rendered here by � signs), each row representing a vertex. All the rows are left-
aligned, and the number of squares in row i is deg(vi). Here's the diagram for our
main example:

���
��
��
�

Russell Merris [?] calculated the eigenvalues of L(G) for a shifted graph, which
implies the following key fact about shifted graphs:

Theorem 8. If G is a shifted graph, then the order of the tree group of G is the
product of all column lengths except the �rst in the Ferrers diagram of G.

5. Our Explorations

Merris's theorem was the starting point for our work. Noting that complete
graphs are shifted, and that the invariant factors, apart from an extra 1, are the
same as the column lengths (other than the �rst one, which by Merris's Theorem
is to be ignored), we initially conjectured that this situation holds for all shifted
graphs. However, we quickly found counterexamples; one small one has degree
sequence d = (3; 3; 2; 2). The column lengths in its Ferrers diagram are 4, 4, and 2
and its tree group is not Z4 � Z2 but Z8. We then began using our new de�nition
of a shifted graph, further de�ning a k-block (shifted) graph as one in which the
total number of cliques plus independent sets, r + s, is k. A 1-block shifted graph
is complete, and vice versa.

We then considered the 2-block case, whose graphs consist of one clique K and
one independent set I and include every possible edge between the two sets. The
counterexample to the original conjecture belongs to this case. Letting k and i be
the numbers of vertices in K and I , respectively, the degree sequence d of a 2-block
graph is

(n� 1; : : : ; n� 1| {z }
k

; k; : : : ; k| {z }
i

):

(Recall that n is the total number of vertices; here, it is k+ i.) The Ferrers column
length sequence F consists of k � 1 n's and i k's. By reducing the appropriate
general Laplacian by hand, we proved that:

Theorem 9. The tree group of a 2-block shifted graph is (Zn)
k�2� (Zk)

i�2�Znk.

This form of the group is not necessarily the canonical one that would be read
directly from the Smith Normal Form. For example, if the graph consists of a clique
of three vertices and an independent set of four vertices, then the column lengths
consist of three 7's and three 3's. According to our theorem, the tree group is
Z7�Z3�Z3 �Z21. This is true, but 3, 3, 7, and 21 cannot be ordered in any way
such that each one in the list divides the next; the canonical form of this group is
Z3 � Z21 � Z21. In general, this means that our conjectures only state what the
group factors always can consist of or contain, not what they must.
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The number of factors should always be n � 1, the dimension of the reduced
Laplacian, so two 1's should be included among them in the 2-block case. In future
cases, the necessary 1's will be included in the notation of the group.

After proving our 2-block theorem, we proceeded to 3-block graphs, which con-
sist of two cliques and one independent set, but here two di�erent cases emerged,
depending on whether or not the independent set contains at least two vertices. The
proofs were again by matrix manipulation, and relied on some seemingly arbitrary
steps discovered only by much trial and error:

Theorem 10. Let G be a 3-block shifted graph consisting of two cliques K1 and K2

and an independent set I, of sizes k1, k2, and i, respectively. Then the tree group
is isomorphic to(

(Zn)
k1�2 � (Zk1+k2)

k2�2 � (Zk1 )
i�2 � Znk1 � Z(k1+k2)k1 � (Z1)

3 if i > 1

(Zn)
k1�2 � (Zk1+k2)

k2�2 � Znk1(k1+k2) � (Z1)
3 if i = 1

We note that the second case doesn't contradict the spirit of the �rst, since
when i = 1, the requirement in the �rst case of i � 2 factors of Zk1 doesn't make
sense. This raises the question of what happens when k1 or k2 is 1. However, it
is not possible for k2 to be 1 because one vertex in a \clique" by itself, connected
to the other clique but to nothing else, is indistinguishable from the vertices of the
independent set. We would then say that instead of two cliques and an independent
set, the graph has one clique of size k1 and one independent set of size i+ 1, and
classify it in the 2-block case.

If k1 is 1, then vertices in the last independent set are connected only to the
single vertex in K1; thus they are leaves. Adding a leaf to a graph doesn't really
change the number or the nature of its spanning trees; the new edge at the leaf
must simply be added to each tree. Furthermore, removing leaves will leave a
shifted graph shifted. So we were not surprised to �nd that:

Proposition 11. The tree group of a shifted graph remains unchanged if leaves are
removed.

Starting from the Laplacian of such a graph, it is easy to create 1's on the
diagonal in the positions corresponding to leaves and the vertex connected to the
leaves and 0's elsewhere in their rows and columns without a�ecting the rest of the
matrix. So a graph with k1 = 1 has the same tree group as one without the leaves
that are connected to k1, so that there is one fewer clique, one fewer independent
set, and one more vertex in the �rst listed clique remaining, K2.

Before we could conjecture anything about the general case, we had to realize
that the column lengths in the Ferrers diagram are the same as the vertex degrees
for vertices in independent sets, and one greater for vertices in cliques. So we
extend our notation and allow Ki to represent the set of columns of length ki + 1,
and similarly Ij to represent the set of columns of length ij . The total number
of columns, however, is one less than the total number of rows; the discrepancy
appears in Kr in odd-block cases and in I1 in even-block cases. Apart from this,
the number of columns of a particular length x always matches the number of
vertices of the corresponding degree (which, to recap, is x if the vertices are in an
independent set or x� 1 if they are in a clique).

Now we can consider our results about the tree group in terms of combinations
of column lengths. In the complete graph, there were no combinations at all; the
invariant factors are all identical to column lengths. In the 2-block case, there was
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one combination of a column in K with one in I . In the 3-block case with at least
two vertices in the independent set, one column in K1 combined with a column in
I , while another column in I combined with one in K2. Implicit in such thinking
is the conjecture that:

Conjecture 12. The tree group can be written in the form
Q

i Zdi where the d0is
are 1's, column lengths, and products of column lengths. Column lengths need not
be factored into two numbers that contribute to two di�erent di's.

For example, with 2 columns, both of length 4 (assume the �rst column has
already been removed), possible tree groups would be Z4 � Z4 and Z16, but not
Z2 � Z8.

In testing other conjectures, we implicitly tested this one with several dozen
graphs and found no counterexamples.

After proving our 3-block theorems, we conjectured that if there are suÆcient
numbers of columns of each length, then one column representing each clique com-
bines with one representing each independent set. We proved this false with 4-block
examples, in which we found that while the conjecture otherwise held, its predicted
combination of a column from I1 with one from K1 did not occur. After trying
some even larger graphs, we now believe:

Conjecture 13. Arrange the column sets in the following path:

K1 $ Is $ K2 $ Is�1 $ : : :$ I2 $ Kr $ I1

for an even-block graph or

K1 $ Is $ K2 $ Is�1 $ : : :$ Kr�1 $ Is $ Kr

for an odd-block one. Also assume that the each blocks with two neighbors in the
path corresponds to a set of at least 2 columns.

Then one combination occurs between columns from each pair of adjacent sets
in the appropriate diagram above.

This conjecture has some nice corollaries; the number of 1's among the group
factors in a k-block graph is always k, and for any clique/independent set consisting
of p > 1 vertices of degree q, the number of q+1's/q's among the factors is exactly
p� 2. The �rst of these is nearly proved by our following observation:

Proposition 14. In a k-block graph with at least two vertices in each block, there
are at least k 1's in the Smith Normal Form of its Laplacian.

The reason that this does not quite prove what we want about the 1's is that we
want to know how many 1's occur in the expression of the group predicted by our
conjecture, which we have noted is not necessarily the same as the expression read
directly o� the Smith Normal Form. But the number of 1's in the Smith form of a
group is an upper bound for the number of them in any form, so this proposition
makes our conjecture far more plausible.

Proof. We will �nd a k � k minor of the Laplacian with determinant �1. Choose
vertices v1; : : : ; vn, one from each of the n blocks and also w1; : : : ; wn in the same
way, with vi 6= w � i for all i. Then consider the minor with rows v1; : : : ; vn and
columns w1; : : : ; wn. Below and to the right of the secondary (upper-right to lower-
left) diagonal every entry is 0, so the determinant is simply �1 times the product
of the entries along this diagonal, all of which are �1.
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Once we have this minor, we can reduce it to a diagonal matrix of 1's, and then
use these to clear everything else in their rows and columns in the full Laplacian.
These 1's will remain as we reduce the rest of the matrix. �

An extension of this proposition deals with some cases where there is only one
vertex in a block.

Corollary 15. The conclusion of the proposition only requires that the independent
sets, not the cliques, contain at least two vertices each.

Proof. If a clique Ki contains only one vertex, we must choose vi = wi. But
this only a�ects the (i; i)th entry in the matrix, which is along the main diagonal
and, because the number of cliques is equal to or one number than the number of
independent sets, is not in the lower right section of the minor, which we need to
consist entirely of 0's. Altering entries in the upper left section will not a�ect the
determinant. The only possible problem is if an altered entry is along the secondary
diagonal; however, the two diagonals only intersect if n is odd, and then they do
so in position (r; r); recall that Kr is the last clique. As we observed earlier, in an
odd-block case this clique cannot consist of a single vertex; otherwise it would be
indistinguishable from the �rst independent set. �

Again, this shows that the tree group for a k-block graph, this time with some
cliques consisting of a single vertex, can be expressed in a form including k 1's.
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